Hematopoietic stem cell-targeted neonatal gene therapy reverses lethally progressive osteopetrosis in oc/oc mice.
نویسندگان
چکیده
Infantile malignant osteopetrosis (IMO) is a fatal disease caused by lack of functional osteoclasts, and the only available treatment is hematopoietic stem cell (HSC) transplantation. In the majority of patients, the TCIRG1 gene, coding for a subunit of a proton pump essential for bone resorption, is mutated. Oc/oc mice have a deletion in the homologue gene (tcirg1) and die at 3 to 4 weeks, but can be rescued by neonatal transplantation of HSCs. Here, HSC-targeted gene therapy of osteopetrosis in the oc/oc mouse model was developed. Oc/oc fetal liver cells depleted of Ter119-expressing erythroid cells were transduced with a retroviral vector expressing tcirg1 and GFP, and subsequently transplanted intraperitoneally to irradiated neonatal oc/oc mice. Eight of 15 mice survived past the normal life span of oc/oc mice. In vitro osteoclastogenesis revealed formation of GFP-positive osteoclasts and bone resorption, albeit at a lower level than from wild-type cells. The skeletal phenotype was analyzed by X-ray and histopathology and showed partial correction at 8 weeks and almost normalization after 18 weeks. In summary, osteopetrosis in oc/oc mice can be reversed by neonatal transplantation of gene-modified HSCs leading to long-term survival. This represents a significant step toward the development of gene therapy for osteopetrosis.
منابع مشابه
Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice.
The osteoclast is vital for establishment of normal hematopoiesis in the developing animal. However, its role for maintenance of hematopoiesis in adulthood is more controversial. To shed more light on this process, we transplanted hematopoietic stem cells from two osteopetrotic mouse models, with lack of osteoclasts or defective osteoclast function, to normal adult mice and examined the bone ph...
متن کاملTargeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts
Autosomal recessive osteopetrosis is a human bone disease mainly caused by TCIRG1 gene mutations that prevent osteoclasts resorbing activity, recapitulated by the oc/oc mouse model. Bone marrow transplantation is the only available treatment, limited by the need for a matched donor. The use of induced pluripotent stem cells (iPSCs) as an unlimited source of autologous cells to generate gene cor...
متن کاملDissociation of Bone Resorption and Bone Formation in Adult Mice with a Non-Functional V-ATPase in Osteoclasts Leads to Increased Bone Strength
Osteopetrosis caused by defective acid secretion by the osteoclast, is characterized by defective bone resorption, increased osteoclast numbers, while bone formation is normal or increased. In contrast the bones are of poor quality, despite this uncoupling of formation from resorption.To shed light on the effect of uncoupling in adult mice with respect to bone strength, we transplanted irradiat...
متن کاملTREM2 and b-Catenin Regulate Bone Homeostasis by Controlling the Rate of Osteoclastogenesis
TREM2 is an immunoreceptor expressed on osteoclasts (OC) and microglia that transmits intracellular signals through the adaptor DAP12. Individuals with genetic mutations inactivating TREM2 or DAP12 develop the Nasu–Hakola disease (NHD) with cystic-like lesions of the bone and brain demyelination that lead to fractures and presenile dementia. The mechanisms of this disease are poorly understood....
متن کاملHuman autosomal recessive osteopetrosis maps to 11q13, a position predicted by comparative mapping of the murine osteosclerosis (oc) mutation.
Autosomal recessive osteopetrosis is a rare congenital disorder characterized by the development of abnormally dense bones, acrocephaly, severe anemia, hepatosplenomegaly and progressive deafness and blindness. The clinical course is rapidly progressive and is lethal at a very young age in the absence of a bone marrow transplant. The failure to remodel developing bone that is the basis of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 109 12 شماره
صفحات -
تاریخ انتشار 2007